一体化预制泵站技术详解
一体化预制泵站:一种在工厂内将井筒、泵、管道、控制系统和通风系统等主体部件集成为一体,并在出厂前进行预制和测试的泵站;
湿式-一体化预制泵站:将水泵间和进水井集成在同一个井筒内,水泵采用湿式安装的一体化预制泵站;
干式-一体化预制泵站:由一个独立干区构成或者将干区、湿区集成在同一个井筒内,水泵采用干式安装的一体化预制泵站;
粉碎式格栅:在进水管上设置切割机的格栅;
泵站形式和组成
◆一体化预制泵站应由井筒结构、内部设施和其他设施组成,泵站主体由通风系统、井筒、出水管路、阀门、进水管道、控制柜、服务平台和水泵等部件组成,
◆泵站工作温度宜为-20℃-40℃,外壳采用玻璃钢或高密度聚乙烯,内部管道和附件采用不锈钢等耐腐蚀材料;输送介质温度0℃-40℃,pH值宜为4~10,输送介质的大颗粒直径小于所配水泵的通径;
◆泵站底板应采用钢筋混凝土结构,底座和底板应牢固连接。井筒直径大于3m的泵站,宜采用钢筋和二次灌浆与泵站底座连接;
◆泵站配备潜水泵,在设计范围内无振动和气蚀现象,水泵宜配套电机冷却系统;
◆湿式泵站宜设自然通风,通风管径不小于100mm;干式泵站采用轴流风机等机械通风,通风量应满足泵站内设备散热要求,井筒内宜设置温控和报警装置;
福建省一体化污水提升泵站厂家地址:山东省潍坊市坊子区北海路与翠坊街东400米,欢迎来厂参观。
泵站设计规定
●当区域用地紧张时,宜选择湿式一体预制泵站;当应用于给水工程或地面不允许有设备和构筑物时,宜选择干式一体化预制泵站;当上游流量大或系统复杂时,可将两个或以上的湿式或干式泵站串联或并联;
●泵站宜设置于绿化带内,且湿式泵站顶盖应高出周围地面200mm以上,干式泵站顶盖为450mm以上,并进行防水设计;
●泵站竖向高程的设计要求:泵站低水位到泵坑底部的距离应大于配套水泵停泵高度;多井筒设计的并联泵站宜采用相同的高和低水位;
●排水泵站有效容积:
●当进水含有固体杂质可能堵塞水泵和后继管路时,应设置格栅,过栅水头损失不宜大于0.5m,当泵站进水杂质较多时,宜设置粉碎式格栅;
抗浮计算
3.5.1 预制泵站的抗浮计算,应满足下式要求:
(3.5.1)
式中
——抗浮力;
——抗浮稳定性安全系数,应按5.5.2条的规定采用;
——浮托力标准值,按第5.5.4条确定。
当不满足式(5.5.1)时,可采取井壁下端四周浇捣混凝土配重或锚杆等方法解决抗浮问题。
3.5.2 预制泵站抗浮稳定安全系数应按(3.5.2)式计算:
Kf=Σv / Σu (3.5.2)
式中:Kf——抗浮稳定安全系数;
Σv——作用于泵房基础底面以上的全部重力(kN);
Σu——作用于泵房基础底面上的扬压力(kN)。
3.5.3 预制泵站抗浮稳定安全系数值,不分泵站级别和地基种别,基本荷载组合下为1.10,特殊荷载组合下为1.05。
3.5.4 地下水对预制泵站筒体壁作用的标准值应按下列规定确定:
1 预制泵站筒体壁上的水压力按静水压力计算;
2 水压力标准值的相应设计水位,应根据勘察部门和水文部门提供的数据采用。对于可能出现的zui高和zui低水位,应综合考虑一段时间变化及工程设计基准期可能的发展趋势确定;
3 水压力标准值的相应设计水位,应根据对结构的荷载效应确定取zui高水位或zui低水位。当取zui高水位时,相应的准*值系数可取平均水位与zui高水位的比值;当取zui低水位时,相应的准*值系数应取1.0。
4 地下水对预制泵站筒体壁作用的压力,应按(3.5.4)式计算:
Fw,k=γwhw (3.5.4)
式中
Fw,k—地下水对预制筒体壁作用的压力标准值(kN/m²);
γw—地下水的重度(kN/m³);
hw—地下水设计水位至基础底面的距离(m)。
3.6 地基计算
3.6.1 预制泵站选用的地基应满足承载能力、稳定和变形的要求。
3.6.2 预制泵站地基应优先选用自然地基。标准贯进击数小于4击的粘性土地基和标准贯进击数小于或即是8击的砂性土地基,不得作为自然地基。当预制泵站地基岩土的各项物理力学性能指标较差,且工程结构又难以协调适应时,可采用人工地基。
3.6.3 只有竖向对称荷载作用时,预制泵站基础底面均匀应力不应大于预制泵站地基特力层承载力;在竖向偏心荷载作用下,除应满足基础底面均匀应力不大于地基持力层承载力外,还应满足基础底面边沿zui大应力不大于1.2倍地基持力层承载力的要求;在地震情况下,预制泵站地基持力层承载力可适当减少。
3.6.4 预制泵站地基承载力应根据站址处地基原位试验数据,按照本规程附录B.1所列公式计算确定。
3.6.5 当预制泵站地基持力层内存在软弱土层时,除应满足持力层的承载力外,还应对软弱夹层的承载力进行核算,经深度修正,并应满足(3.6.5)式要求:
Pc+Pz=[Rz] (3.6.5)
式中:Pc——软弱夹层顶面处的自重应力(kPa);
Pz——软弱夹层顶面处的附加应力(kPa),可将泵站基础底面应力简化为竖向均布、竖向 三角形颁和水平向均布等情况,按条形或矩形基础计算确定;
[Rz]——软弱夹层的承载力(kPa)。
复杂地基上大型泵站地基承载力计算,应作专门论证确定。
3.6.6 当预制泵站基础受振动荷载影响时,其地基承载力可降低,并可按(3.6.6)式计算:
[R']≤ψ[R] (3.6.6)
式中:[R']——在振动荷载作用下的地基承载力(kPa);
[R]——在静荷载作用下的地基承载力(kPa);
ψ——振动折减系数,可按0.8~1.0选用。高扬程机组的基础可采用小值,低扬程机组的块基型整体式基础可采用大值。
3.6.7 预制泵站地基*沉降量可按(3.6.7)式计算:
S∞=Σ(e1i-e2i)/(1+e1i)*hi (i=1,n) (3.6.7)
式中:S∞——地基*沉降量(cm);
i——土层号;
n——地基压缩层范围内的土层数;
e1i、e2i——泵站基础底面以下第i层土在均匀自重应力作用下的孔隙比和在平均自重应力、均匀附加应力共同作用下的孔隙比;
hi——第i层土的厚度(cm)。
地基压缩层的计算深度应按计算层面处附加应力与自重应力之等于0.1∽0.2(坚实地基取大值,软土地基取小值)的条件确定。当其下尚有压缩性较大的土层时,地基压缩层的计算深度应计至该土层的底面。
3.6.8 预制泵站地基沉降量和沉降差,应根据工程具体情况分析确定,满足泵站结构安全和不影响泵房内机组的正常运行。
3.6.9 预制泵站的地基处理方案应综合考虑地基土质、泵站结构特点、施工条件和运行要求等因素,宜按本规程附录B表B.2,经技术经济比较确定。换土垫层、桩基础、沉井基础、振冲砂(碎石)桩和强夯等常用地基处理设计应符合现行标准《建筑地基处理技术规范》JGJ 79、《建筑桩基技术规范》JGJ 94、《既有建筑地基基础加固技术规范》JGJ 123的有关规定。
3.7 构造
3.7.1 预制泵站钢筋混凝土的施工中,混凝土的水泥用量应满足设计要求,且不宜低于200kg/m。
3.7.2 预制泵站筒体坚固,纤维缠绕玻璃钢的强度,应*抵抗腐蚀、撕裂和其他破坏力,并*防水。
3.7.3 预制泵站外部材质应力和荷载应采用FEA进行计算,有限元模型采用轴对称模型,外压力作用于泵站的圆柱周面,大小等效于水压的1.6倍。
3.7.4 泵站顶盖结构设计应根据泵站埋设的位置确定,顶盖结构强度应能承受顶部zui大荷载。
3.7.5 埋设在道路上的泵站,顶盖高度应与周围地坪齐平,并根据道路荷载来复核顶盖强度,泵站井筒侧壁不应承受道路荷载。
3.7.6 预制泵站采用自清洁底部设计,减少泵站沉积。
福建省一体化污水提升泵站厂家地址:山东省潍坊市坊子区北海路与翠坊街东400米,欢迎来厂参观。
相关设备介绍:一体化污水处理设备
设备清单:
1污水提升设备
- 潜污提升泵
- 50WQ15-16-1.5
- 1.5KW
- 16m
- 15m3/h
- 2台(一用一备)
- 液位控制器
- FK-1
- 3个
2地埋式污水处理部分
- WSZ-10FA
- ¢3000*12000mm
3鼓风机
规格型号:HC-100S
功率:5.5KW
水压:3000MM
供气量:3.25m3/min
数量:2台(一用一备)
4电器控制系统
采用PLC控制系统,对污水处理站的工艺过程进行自动控制、集中管理,本系统由可编程序控制器及检测仪表组成。程序主要控制调节池的二台污水提升泵;生化设备曝气时的二台滑片式风机的相互切换工作;沉淀池的定期排泥、回流泵,污泥池间隙曝气等。
污水处理系统运行情况自检报告:
我司污水全部来自生活(工业用水循环使用无外排),排放量约5m3/h。污水处理站24小时自控运行,设计采用一套10m3/h污水处理设备。我司污水有如下特点:污水不均匀程度高,水量与水质具有较大的不均匀性,设置均质均量的调节池;污水BOD/COD值约0.5,可生化性较高;本污水处理工艺除了去除有机物外还应能去除氨氮,使出水达到排放要求。
我司汇聚后的生活污水经过一道格栅,去除水中较大的悬浮、漂浮物和带状物,上清液自流进入调节池,调节池主要是调节污水的水量和水质,为防止悬浮物在调节池内沉淀,在调节池底布有穿孔曝气管,采用间隙曝气。调节池出水由提升泵进入A级生化池(缺氧池)和O级生化池(好氧池)进行生化处理。在A级池内,由于污水中有机物浓度较高,微生物处于缺氧状态,此时微生物为兼性微生物,它们将污水中有机氮转化为氨氮,同时利用有机碳源作为电子供体,将NO2--N、NO3--N转化为N2,而且还利用部分有机碳源和氨氮合成新的细胞物质。经过A级池的生化作用,污水中仍有一定量的有机物和较高的氮氨存在,为使有机物进一步氧化分解,同时在碳化作用趋于*的情况下,硝化作用能顺利进行,特别设置O级生化池,O级生化池的处理依靠硝化菌完成,将污水中的氨氮转化为NO2--N、NO3—N。O级池出水一部分回流至调节池进行内循环,以达到硝化的目的,另一部分进入沉淀池进行沉淀,进行固液分离。分离后的出水进入消毒池,通过NaClO3+2HCl-→CLO2+0.5Cl2+NaCl+H2O反应,CLO2发生器产生的CLO2进入消毒池,消毒处理后的出水经过活性碳过滤后的出水达标排放。
:山东省潍坊市坊子区北海路与翠坊街东400米,欢迎来厂参观。