安徽亨利仪表电缆有限公司
初级会员 | 第1年

18726217599

当前位置:安徽亨利仪表电缆有限公司>>信号电缆>> JYVPLR22信号电缆JYVPLR22导体直径2.76mm耐弯曲

信号电缆JYVPLR22导体直径2.76mm耐弯曲

参  考  价面议
具体成交价以合同协议为准

产品型号JYVPLR22

品       牌

厂商性质生产商

所  在  地滁州市

更新时间:2022-01-19 07:22:01浏览次数:3次

联系我时,请告知来自 兴旺宝
同类优质产品更多>
信号电缆JYVPLR22导体直径2.76mm耐弯曲
电缆的主要制造工艺技求,在变频电机电缆生产过程中,绝缘线芯挤包工序、成缆工序等是 关键的工序。绝缘线芯挤包工序绝缘线芯的质量将直接影响到电缆的电气性能。在生产过程中,我们特别注重原材料的净化,屏蔽与绝缘材料挤包紧密,控制绝缘偏心度和绝缘外径的均匀*,这样可减少界面效应,提高电缆电气性能。

变频电缆的结构包括三根主线绝缘线、三根零线绝缘线,在主线绝缘线和零线绝缘线外依次设置内绕包层、铜带层、外绕包层和外护套层,形成3+3线芯结构,使电缆具有较强的耐电压冲击性,能经受高速频繁变频时的脉冲电压,对变频电器起到良好的保护作用。

变频电缆主要用于变频电源和变频电机之间连接用的电缆,以及额定电压1KV及以下的输配电线路中,作输送电能用。尤其适用于造纸、冶金、金属加工、矿山、铁路和食品加工等行业。
结构设计:电缆对称性设计,对于1.8/3KW及以下变频电机电缆,和对称3+1芯和4芯电缆仅可用于主电源的输入缆,但使用对称结构电缆。变频器与变频电机问电缆均需采用对称电缆结构,对称电缆结构有3芯和3+3芯两种,3+3芯电缆结构是将三大一小四芯绝缘线芯中第四芯(中性线芯)分解为三个截面较小的绝缘线芯,把三大三小线芯对称成缆,对于6/10kV变频电机电缆,该电缆结构与6/10kV普通电力电缆有所不同,普通电力电缆是将三根绝缘线芯采用铜带屏蔽后成缆,而变频电机电缆是由铜丝铜带屏蔽后挤包分相护套,然后对称成缆,对称电缆结构由于导线的互换性,有更好的电磁相容性,对抑制电磁干扰起到一定的作用,能抵消高次谐彼中的奇次频率,提高变频电机电缆的抗干扰性,减少了整个系统中的电磁辐射。2.屏蔽结构的设计,1.8/3kV及以下变频电机电缆的屏蔽一般采用总屏蔽,6/10kv变频电机电缆屏蔽由分相屏蔽和总屏蔽构成,分相屏蔽一般可采用铜带屏蔽或铜丝铜带组合屏蔽。总屏蔽结构可采用铜丝铜带组合屏蔽、铜丝编织屏蔽、铜带屏蔽、铜丝编织铜带屏蔽等,屏蔽层截面与主线芯截面按一定比例。此结构的屏蔽电缆可抗电磁感应、接地不良和电源线传导干扰,减小电感,防止感应电动势过大。屏蔽层既起到抑制电磁波对外发射的作用,又可作为短路电流的通道,能起到中性线芯的保护作用。6/10kV变频电机电缆,考虑到电缆在使用过程中经常受到径向外力作用,在电缆屏蔽层外增加镀锌钢带销装层(在屏蔽层和钢带销装层之间加隔离套)。钢带销装主要是作为电缆的径向机械保护层,同时它也起到附加性总屏蔽作用,特别是钢带铠装和铜丝、铜带屏蔽,是采用了两种不同屏蔽材料,在电磁波屏蔽上起到一定的互补作用,屏蔽效果将更好.3.电缆电气性能设计,1.8/3kV及以下变频电机电缆电气性能均按GB/Tl2706,2002标准设计。6/10kV变频电机电缆在满足GBT/l2706.2002标准外, 增加了电容和电感等电性能要求。根据变频电机电缆的实际使用情况并参照GB/T 12706.
电线电缆行业是中国仅次于汽车行业的第二大行业,产品品种满足率和国内*均超过90%。在世界范围内,中国电线电缆总产值已超过美国,成为世界上*大电线电缆生产国。伴随着中国电线电缆行业高速发展,新增企业数量不断上升,行业整体技术水平得到大幅提高。中国经济持续快速的增长,为线缆产品提供了巨大的市场空间,中国市场强烈的力,使得世界都把目光聚焦于中国市场,在改革开放短短的几十年,中国线缆制造业所形成的庞大生产能力让世界刮目相看。随着中国电力工业、数据通信业、城市轨道交通业、汽车业以及造船等行业规模的不断扩大,对电线电缆的需求也将迅速增长,未来电线电缆业还有巨大的发展潜力。

信号电缆JYVPLR22导体直径2.76mm耐弯曲

BPYJVP、BPYJVP2、BPYJVPP2、BPYJVP3 、ZR-BPGGP..ZR-BPGGP2、ZR-BPGGPP2、ZR-BPGGP3、ZR-BPGVFP、ZR-BPGVFP2、ZR-BPGVFPP2、ZR-BPGVFP3 、ZR-BPYJVPP、ZR-BPVVPP、ZR-BPFFP、ZR-BPFFP2、ZR-BPFFPP2、ZR-BPFFP3、ZR-BPVVP、ZR-BPVVP2、ZR-BPVVPP2、ZR-BPVVP3、ZR-BPYJVP、ZR-BPYJVP2、ZR-BPYJVPP2、ZR-BPYJVP3 ..NH-BPGGP、NH-BPGGP2、NH-BPGGPP2、NH-BPGGP3、NH-BPGVFP、NH-BPGVFP2、NH-BPGVFPP2、NH-BPGVFP3 、NH-BPYJVPP、NH-BPVVPP、NH-BPFFP、NH-BPFFP2、NH-BPFFPP2、NH-BPFFP3、NH-BPVVP、NH-BPVVP2、NH-BPVVPP2、 NH-BPVVP3、NH-BPYJVP、NH-BPYJVP2、NH-BPYJVPP2、NH-BPYJVP3 ..ZRC-BPYJVPP、

变频器与变频电机问电缆均需采用对称电缆结构,普通电力电缆是将三根绝缘线芯采用铜带屏蔽后成缆,而变频电机电缆是由铜丝铜带屏蔽后挤包分相护套,然后对称成缆,对称电缆结构由于导线的互换性,有更好的电磁相容性,对抑制电磁干扰起到一定的作用,能抵消高次谐彼中的奇次频率,提高变频电机电缆的抗干扰性,减少了整个系统中的电磁辐射。变频电机电缆屏蔽由分相屏蔽和总屏蔽构成,分相屏蔽一般可采用铜带屏蔽或铜丝铜带组合屏蔽。总屏蔽结构可采用铜丝铜带组合屏蔽、铜丝编织屏蔽、铜带屏蔽、铜丝编织铜带屏蔽等,屏蔽层截面与主线芯截面按一定比例。此结构的屏蔽电缆可抗电磁感应、接地不良和电源线传导干扰,减小电感,防止感应电动势过大。屏蔽层既起到抑制电磁波对外发射的作用,又可作为短路电流的通道,能起到中性线芯的保护作用。6/10kV变频电机电缆,考虑到电缆在使用过程中经常受到径向外力作用,在电缆屏蔽层外增加镀锌钢带铠装层(在屏蔽层和钢带铠装层之间加隔离套)。钢带铠装主要是作为电缆的径向机械保护层,同时它也起到附加性总屏蔽作用,特别是钢带铠装和铜丝、铜带屏蔽,是采用了两种不同屏蔽材料,在电磁波屏蔽上起到一定的互补作用,屏蔽效果将更好。电缆电气性能设计变频电机电缆电气性能均电缆的主要制造工艺技求?在变频电机电缆生产过程中,绝缘线芯挤包工序、成缆工序等是关键的工序。?绝缘线芯挤包工序绝缘线芯的质量将直接影响到电缆的电气性能。关于变频器的输出与电缆长度关系的研究:变频器主要用于交流电动机转速调节,除了具有的调速性能之外,变频器还有显著的节能作用,是企业技术改造和产品更新换代的理想调速装置。但是由于变频器的自身输出特性和电缆分布电容的耦合作用,限制了变频器的输出距离。原因分析
变频器的输出到电机的电缆长度受到很多因素的影响,这其中的原因主要有以下几点:分布电容。所谓分布电容,就是指由非电容形态形成的一种分布参数。一般是指在印制板或其他形态的电路形式,在线与线之间、印制板的上下层之间形成的电容。而变频器输出距离受限的问题,和电缆的分布电容有密切关系,不只是电容器才有电容,实际上任何两个绝缘导体之间都存在电容。例如导线之间,导线与大地之间,都是被绝缘层和空气介质隔开的,所以都存在着电容通常情况下,这个电容值很小,电缆长度较短时,它的实际影响可以忽略不计,如果电缆很长或传输信号频率很高时,就必须考虑分布电容的作用。在电缆远距离敷设系统中,电缆的电容会表现的较为明显,对控制回路产生一定的影响,甚至影响控制功能,特别是对于变频器控制普通低压电机的控制回路,故障较多表现为过流、起停失灵等现象,给生产和维护造成很大的安全隐患。由于输出线上的分布电容和分布电感的共振产生浪涌电压,将会叠加到输出电压上,晶体管的开关频率越高,电缆越长,产生的浪涌电压越高,时,可产生直流电压的两倍的浪涌电压。这种情况下,很容易引起过压过流保护,甚至烧坏模块。
分布电容是一种分布参数,其数值不仅随电缆的生产厂商不同而存在差异,而且会因为电缆的敷设方式、工作状态和外界环境因素而不同,这需要在设计时综合考虑。变频器本体输出问题
目前,几乎所有的变频器都采用脉宽调制技术,但是由于变频器中的功率开关器件工作在开关状态,器件的高速开关动作使得电压和电流在短时间内发生跳变,这使得电压、电流波形中含有大量的谐波成分,其中高次谐波会使变频器输出电流增大,造成电机绕组发热,产生振动和噪声,加速绝缘老化,还可能损坏电机;同时各种频率的谐波会向空间发射不同频率的无线电干扰,可能导致其它设备误动作。并且使用变频调速后,实现了电机的软启动,使电机工作平稳,电机轴承磨损减小,延长了电机使用寿命和维护周期。因此,变频调速技术在石油、冶金、发电、铁路、矿山等工业方面得到了广泛的使用。1.电缆对称性设计:对于1.8/3KW及以下变频电机电缆,和对称3+1芯和4芯电缆仅可用于主电源的输入缆,但使用对称结构电缆。变频器与变频电机问电缆均需采用对称电缆结构,对称电缆结构有3芯和3+3芯两种,3+3芯电缆结构是将三大一小四芯绝缘线芯中第四芯(中性线芯)分解为三个截面较小的绝缘线芯,把三大三小线芯对称成缆,对于6/10kV变频电机电缆,该电缆结构与6/10kV普通电力电缆有所不同,普通电力电缆是将三根绝缘线芯采用铜带屏蔽后成缆,而变频电机电缆是由铜丝铜带屏蔽后挤包分相护套,然后对称成缆,对称电缆结构由于导线的互换性,有更好的电磁相容性,对抑制电磁干扰起到一定的作用,能抵消高次谐彼中的奇次频率,提高变频电机电缆的抗干扰性,减少了整个系统中的电磁辐射。2.屏蔽结构的设计1.8/3kV及以下变频电机电缆的屏蔽一般采用总屏蔽,6/10kv变频电机电缆屏蔽由分相屏蔽和总屏蔽构成,分相屏蔽一般可采用铜带屏蔽或铜丝铜带组合屏蔽。总屏蔽结构可采用铜丝铜带组合屏蔽、铜丝编织屏蔽、铜带屏蔽、铜丝编织铜带屏蔽等,屏蔽层截面与主线芯截面按一定比例。此结构的屏蔽电缆可抗电磁感应、接地不良和电源线传导干扰,减小电感,防止感应电动势过大。屏蔽层既起到抑制电磁波对外发射的作用,又可作为短路电流的通道,能起到中性线芯的保护作用。关于变频器的输出与电缆长度关系的研究:变频器主要用于交流电动机转速调节,除了具有的调速性能之外,变频器还有显著的节能作用,是企业技术改造和产品更新换代的理想调速装置。但是由于变频器的自身输出特性和电缆分布电容的耦合作用,限制了变频器的输出距离。原因分析
变频器的输出到电机的电缆长度受到很多因素的影响,这其中的原因主要有以下几点:分布电容。所谓分布电容,就是指由非电容形态形成的一种分布参数。一般是指在印制板或其他形态的电路形式,在线与线之间、印制板的上下层之间形成的电容。而变频器输出距离受限的问题,和电缆的分布电容有密切关系,不只是电容器才有电容,实际上任何两个绝缘导体之间都存在电容。例如导线之间,导线与大地之间,都是被绝缘层和空气介质隔开的,所以都存在着电容通常情况下,这个电容值很小,电缆长度较短时,它的实际影响可以忽略不计,如果电缆很长或传输信号频率很高时,就必须考虑分布电容的作用。在电缆远距离敷设系统中,电缆的电容会表现的较为明显,对控制回路产生一定的影响,甚至影响控制功能,特别是对于变频器控制普通低压电机的控制回路,故障较多表现为过流、起停失灵等现象,给生产和维护造成很大的安全隐患。由于输出线上的分布电容和分布电感的共振产生浪涌电压,将会叠加到输出电压上,晶体管的开关频率越高,电缆越长,产生的浪涌电压越高,时,可产生直流电压的两倍的浪涌电压。这种情况下,很容易引起过压过流保护,甚至烧坏模块。
分布电容是一种分布参数,其数值不仅随电缆的生产厂商不同而存在差异,而且会因为电缆的敷设方式、工作状态和外界环境因素而不同,这需要在设计时综合考虑。变频器本体输出问题
目前,几乎所有的变频器都采用脉宽调制技术,但是由于变频器中的功率开关器件工作在开关状态,器件的高速开关动作使得电压和电流在短时间内发生跳变,这使得电压、电流波形中含有大量的谐波成分,其中高次谐波会使变频器输出电流增大,造成电机绕组发热,产生振动和噪声,加速绝缘老化,还可能损坏电机;同时各种频率的谐波会向空间发射不同频率的无线电干扰,可能导致其它设备误动作。并且使用变频调速后,实现了电机的软启动,使电机工作平稳,电机轴承磨损减小,延长了电机使用寿命和维护周期。因此,变频调速技术在石油、冶金、发电、铁路、矿山等工业方面得到了广泛的使用。关于变频器的输出与电缆长度关系的研究:变频器主要用于交流电动机转速调节,除了具有的调速性能之外,变频器还有显著的节能作用,是企业技术改造和产品更新换代的理想调速装置。但是由于变频器的自身输出特性和电缆分布电容的耦合作用,限制了变频器的输出距离。原因分析
变频器的输出到电机的电缆长度受到很多因素的影响,这其中的原因主要有以下几点:分布电容。所谓分布电容,就是指由非电容形态形成的一种分布参数。一般是指在印制板或其他形态的电路形式,在线与线之间、印制板的上下层之间形成的电容。而变频器输出距离受限的问题,和电缆的分布电容有密切关系,不只是电容器才有电容,实际上任何两个绝缘导体之间都存在电容。例如导线之间,导线与大地之间,都是被绝缘层和空气介质隔开的,所以都存在着电容通常情况下,这个电容值很小,电缆长度较短时,它的实际影响可以忽略不计,如果电缆很长或传输信号频率很高时,就必须考虑分布电容的作用。在电缆远距离敷设系统中,电缆的电容会表现的较为明显,对控制回路产生一定的影响,甚至影响控制功能,特别是对于变频器控制普通低压电机的控制回路,故障较多表现为过流、起停失灵等现象,给生产和维护造成很大的安全隐患。由于输出线上的分布电容和分布电感的共振产生浪涌电压,将会叠加到输出电压上,晶体管的开关频率越高,电缆越长,产生的浪涌电压越高,时,可产生直流电压的两倍的浪涌电压。这种情况下,很容易引起过压过流保护,甚至烧坏模块。
分布电容是一种分布参数,其数值不仅随电缆的生产厂商不同而存在差异,而且会因为电缆的敷设方式、工作状态和外界环境因素而不同,这需要在设计时综合考虑。变频器本体输出问题
目前,几乎所有的变频器都采用脉宽调制技术,但是由于变频器中的功率开关器件工作在开关状态,器件的高速开关动作使得电压和电流在短时间内发生跳变,这使得电压、电流波形中含有大量的谐波成分,其中高次谐波会使变频器输出电流增大,造成电机绕组发热,产生振动和噪声,加速绝缘老化,还可能损坏电机;同时各种频率的谐波会向空间发射不同频率的无线电干扰,可能导致其它设备误动作。总屏蔽结构可采用铜丝铜带组合屏蔽、铜丝编织屏蔽、铜带屏蔽、铜丝编织铜带屏蔽等,屏蔽层截面与主线芯截面按一定比例。此结构的屏蔽电缆可抗电磁感应、接地不良和电源线传导干扰,减小电感,防止感应电动势过大。屏蔽层既起到抑制电磁波对外发射的作用,又可作为短路电流的通道,能起到中性线芯的保护作用。关于变频器的输出与电缆长度关系的研究:变频器主要用于交流电动机转速调节,除了具有调速性能之外,变频器还有显著的节能作用,是企业技术改造和产品更新换代的理想调速装置。但是由于变频器的自身输出特性和电缆分布电容的耦合作用,限制了变频器的输出距离。原因分析
变频器的输出到电机的电缆长度受到很多因素的影响,这其中的原因主要有以下几点:分布电容。所谓分布电容,就是指由非电容形态形成的一种分布参数。一般是指在印制板或其他形态的电路形式,在线与线之间、印制板的上下层之间形成的电容。而变频器输出距离受限的问题,和电缆的分布电容有密切关系,不只是电容器才有电容,实际上任何两个绝缘导体之间都存在电容。例如导线之间,导线与大地之间,都是被绝缘层和空气介质隔开的,所以都存在着电容通常情况下,这个电容值很小,电缆长度较短时,它的实际影响可以忽略不计,如果电缆很长或传输信号频率很高时,就必须考虑分布电容的作用。在电缆远距离敷设系统中,电缆的电容会表现的较为明显,对控制回路产生一定的影响,甚至影响控制功能,特别是对于变频器控制普通低压电机的控制回路,故障较多表现为过流、起停失灵等现象,给生产和维护造成很大的安全隐患。由于输出线上的分布电容和分布电感的共振产生浪涌电压,将会叠加到输出电压上,晶体管的开关频率越高,电缆越长,产生的浪涌电压越高,时,可产生直流电压的两倍的浪涌电压。这种情况下,很容易引起过压过流保护,甚至烧坏模块。
分布电容是一种分布参数,其数值不仅随电缆的生产厂商不同而存在差异,而且会因为电缆的敷设方式、工作状态和外界环境因素而不同,这需要在设计时综合考虑。变频器本体输出问题
目前,几乎所有的变频器都采用脉宽调制技术,但是由于变频器中的功率开关器件工作在开关状态,器件的高速开关动作使得电压和电流在短时间内发生跳变,这使得电压、电流波形中含有大量的谐波成分,其中高次谐波会使变频器输出电流增大,造成电机绕组发热,产生振动和噪声,加速绝缘老化,还可能损坏电机;同时各种频率的谐波会向空间发射不同频率的无线电干扰,可能导致其它设备误动作。
关于变频器的输出与电缆长度关系的研究:变频器主要用于交流电动机转速调节,除了具有的调速性能之外,变频器还有显著的节能作用,是企业技术改造和产品更新换代的理想调速装置。但是由于变频器的自身输出特性和电缆分布电容的耦合作用,限制了变频器的输出距离。原因分析
变频器的输出到电机的电缆长度受到很多因素的影响,这其中的原因主要有以下几点:分布电容。所谓分布电容,就是指由非电容形态形成的一种分布参数。一般是指在印制板或其他形态的电路形式,在线与线之间、印制板的上下层之间形成的电容。而变频器输出距离受限的问题,和电缆的分布电容有密切关系,不只是电容器才有电容,实际上任何两个绝缘导体之间都存在电容。例如导线之间,导线与大地之间,都是被绝缘层和空气介质隔开的,所以都存在着电容通常情况下,这个电容值很小,电缆长度较短时,它的实际影响可以忽略不计,如果电缆很长或传输信号频率很高时,就必须考虑分布电容的作用。在电缆远距离敷设系统中,电缆的电容会表现的较为明显,对控制回路产生一定的影响,甚至影响控制功能,特别是对于变频器控制普通低压电机的控制回路,故障较多表现为过流、起停失灵等现象,给生产和维护造成很大的安全隐患。由于输出线上的分布电容和分布电感的共振产生浪涌电压,将会叠加到输出电压上,晶体管的开关频率越高,电缆越长,产生的浪涌电压越高,时,可产生直流电压的两倍的浪涌电压。这种情况下,很容易引起过压过流保护,甚至烧坏模块。
分布电容是一种分布参数,其数值不仅随电缆的生产厂商不同而存在差异,而且会因为电缆的敷设方式、工作状态和外界环境因素而不同,这需要在设计时综合考虑。变频器本体输出问题
目前,几乎所有的变频器都采用脉宽调制技术,但是由于变频器中的功率开关器件工作在开关状态,器件的高速开关动作使得电压和电流在短时间内发生跳变,这使得电压、电流波形中含有大量的谐波成分,其中高次谐波会使变频器输出电流增大,造成电机绕组发热,产生振动和噪声,加速绝缘老化,还可能损坏电机;同时各种频率的谐波会向空间发射不同频率的无线电干扰,可能导致其它设备误动作。
5变频电缆屏蔽层可抗电磁感应、接地不良和电源线传导干扰,减小电感,防止感应电动势过大。屏蔽层既起到抑制电磁波对外发射的作用,又可作为短路电流的通道,能起到中性线芯的保护作用。?
6以普通的3+1型电力电缆为例,完整的三项供电系统,当三项电流平衡时,其中性线芯的电流为零;当高次谐波产生时,经过电缆的多次反射,便会出现对此的波峰与波峰或波谷与波谷相叠加的机会,电缆越长叠加机会越多表现得也就越明显。加之电缆这个大的电容本身对高次谐波就有着放大的作用,对于3+1型电缆,高次谐波产生的电流分量在中性线芯内无相位差,这样一来电流将会叠加成原分量的数倍,中性线芯在高频脉冲下很快就会被击穿 。为了解决这个问题,我们将3+1型的电缆中的1芯分成了三份,以对称的方式做成3+3结构,这样,三个中性线芯的相位一次滞后120°,形成了一个对称平衡的状态,使得电流不会型叠加,有效的减小了高次谐波对变频电缆的危害。此为变频电缆选择对称3+3结构的理由之一。

信号电缆JYVPLR22导体直径2.76mm耐弯曲

 

会员登录

×

请输入账号

请输入密码

=

请输验证码

收藏该商铺

X
该信息已收藏!
标签:
保存成功

(空格分隔,最多3个,单个标签最多10个字符)

常用:

提示

X
您的留言已提交成功!我们将在第一时间回复您~
拨打电话
在线留言