化学品污水生化处理设备规格
在 装的应用软件形式出现, 全 脱 离 Z[ 开 发 环 境, &3-B;EA 完 操作系统下独立运行。 软 件 的 界 面 包 括 T 个主 要 化 学 水 系 统的流程及控制参数显示和调整界面, 不同水工况下 出 水 水 质的动态曲线显示界面等。 : K9 主控界面电厂化学水处理系 统 的 仿 真 主 控 界 面 如 图 # 所 示。 它 主要由菜单栏、 工具栏、 子窗口区和状态条组成,可实 现 电 厂 化学水处理系统的全部仿真控制功能。
K: 一级除盐系统界面 电厂化学水处理系 统 的 一 级 复床 除 盐 工 艺 流 程 界 面 如 图 L 所示, 此系统内部由 弱 酸 阳 床 强 酸 阳 床 弱 碱 阴床 强 (S) 碱阴床 S 台离子交换器串联组成, 系统之 间由 $ 套 同 种 设 备 并联构成。待处理的水经预处理系统后, 经过一级复 床 除 盐 系统处理, 再流到混合床处理系统中去。窗体的中 上 方 有 S 个 控 制 按 钮, 别 是 启 动、 运、 分 停 反 洗、 大反洗。这 S 个按 钮 分 别 表 示 除 盐 系 统 的 运 行 工 艺, 其 表示方法与预处理系统一样, 都是通过流水管线的颜色变化.
化学品污水生化处理设备规格
我国是世界上水资源短缺zui为严重的之一,城市污水回用是解决水资源短缺的有效途径。城镇生活污水的处理以生物法为主,出水水质通常不能满足回用水的要求,需要深度处理,以进一步去除水中微量有机污染物、悬浮物、氮和磷等。臭氧深度处理是一种简单、有效的深度处理技术,反应快且无二次污染,常用于生活污水的深度处理。针对如何评价和表征处理后回用水的水质安全风险问题,研究者主要采用生物毒性作为物理化学指标的补充。
急性生物毒性是指人、鱼类、细菌和藻类等生物体在一次或在24 h 内多次与毒性物质接触后,短期内产生的致毒效应。水体中含有各种无机离子和有机物,水体中的氯离子、硫酸根离子和硝酸根离子,有可能与高级氧化过程中产生的·OH 等发生反应,M等在处理染料废水中报道,臭氧氧化中的臭氧、·OH 和水体中的无机离子会发生反应。但是目前针对生活污水的臭氧深度处理研究中,缺乏对臭氧深度处理对出水急性毒性的影响因素的研究。
利用微藻进行污水处理的历史追溯已久. 早在20世纪50年代,Oswald等就提出利用微藻处理污水的设想. 此后,以藻-菌共生体系和高效藻类塘为代表的悬浮生长藻类塘系统在分散式污水处理中得到了广泛的工程应用. 但这类系统因占地面积大、处理效果不稳定等局限性,一直未能成为污水处理的主流工艺. 近年来,在市政污水处理厂深度净化需要以及渴望从污水中获得生物柴油的驱动下,微藻污水处理在世界范围.微藻生长过程需要大量吸收氮(N)、磷(P)等营养元素,可直接降低二/三级出水中N、P等污染物的含量. 通过固定二氧化碳(CO2)、产生氧气(O2)、提高pH等间接作用,微藻还能创造出有效去除水中残留有机物和病原性微生物的环境条件. 此外,微藻也具有吸附重金属等有害物质的能力. 因此,微藻具有成为污水深度净化技术的良好潜力. 在污水二/三级处理中,去除营养元素的常见藻种包括: ①绿藻门的小球藻(Chlorella)、葡萄藻(Botryococcus)、栅藻(Scenedesmus)和微绿球藻(Nannochloris)等,其中尤以小球藻(Chlorella)和栅藻(Scenedesmus)的研究报道为多;②蓝藻门的节旋藻属(Arthrospira sp.)、颤藻属(Oscillatoria sp.)和席藻属(Phormidium);③硅藻门的三角褐指藻(P. tricornutum)等.以上种属的N、P去除效果可参见Cai等的综述文章.
在藻种选择的基础上,微藻培养系统(反应器)的构建是实现微藻污水处理工程化应用的关键. 按微藻的生长方式不同,微藻培养系统可分为悬浮培养和附着培养两大类. 悬浮培养系统可进一步分为开放式和封闭式两类:①开放式系统主要指各类塘系统,典型的如高效藻类塘和跑道式藻类塘等;②封闭式系统主要指各类光生物反应器,分为管式(垂直、水平、螺旋)、圆柱式、薄板式和袋式等. 附着式系统包括光生物膜(平板)反应器和藻细胞固定化. 考虑到污水处理的实际情况(水量大,建造、运行成本等),开放培养系统仍将是微藻污水处理的主流反应器构型.
如上所述,藻细胞用于生产生物柴油是微藻污水处理重获新生的主要驱动力之一. 通过微藻生产生物柴油具有其他任何产油作物*的优势:①藻细胞的光合效率高,生长速度快、周期短,其产油量为47000~190000 L · hm-2 · a-1,是农作物的7~30倍;②生物质燃油热值高,平均达33 MJ · kg-1,是木材或农作物秸秆的1.6倍;③不需占用农业用地;④生物质(藻细胞)生产和加工成本低,尤其是以污水为底物进行藻细胞培养时. 有鉴于此,美国、欧洲、澳大利亚、日本、中国台湾等发达和地区都已将微藻培养作为实现污水生态处理和可再生能源生产的战略发展目标. 常见的产油藻种及其油脂含量文献已述及.
工业上以产油为目的的微藻培养一般采用封闭式光生物反应器,并且往往采用纯培养或单株培养的方式. 当结合污水处理目标时,因巨大的水量及污水中复杂的成分(尤其是其中包含的混合种属),以上培养方式将很难维持. 站在新的历史起点上,我们的事业崇高而神圣,我们的责任重大而光荣。为实现中华民族伟大复兴的中国梦,我们既要有“乱云飞渡仍从容”的战略定力,又要有“不到长城非好汉”的进取精神!没有人会为你的贫穷负责、却有人为你的富有而喝彩!所以不要活在别人的嘴巴里、做好自己!有路,就大胆的去走;有梦,就大胆的飞翔;若要成功,就要大胆去闯。
大胆尝试才是信仰。不敢做,不去闯,梦想就会变成幻想。前行的路,不怕万人阻挡,只怕自己投降;人生的帆,不怕狂风巨浪,只怕自己没胆量!天道酬勤,地道酬善,商道酬信,业道酬精。送给正在努力打拼的你:坚持不懈,努力前行,成功的路上一定有你,相信自己是zui棒的!
近年来,国内外学者在开发微藻污水深度净化和可再生能源生产潜力方面进行了大量研究;在污水净化机理、藻种筛选、反应器设计、工艺条件控制及藻细胞加工利用等方面都取得了积极的进展. 然而,无论从污水净化本身,还是能源生产来说,藻细胞的分离、采收都一直是一个悬而未决的基础性技术难题. 微藻细胞一般小于30 μm,带负电荷,密度接近于水,这些特性使得藻细胞在水中往往处于稳定的悬浮状态,很难像活性污泥那样通过重力沉淀而实现自然分离. 结果,藻细胞会随处理水大量流失,不仅二次污染处理水,而且导致反应器内生物量难以大量维持(一般仅为0.2~0.6 g · L-1). 低的培养密度导致去除效率低下,使得处理效果稳定性较差. 对此,往往需降低处理负荷,同时采用较长的水力停留时间(HRT),进而导致占地面积加大. 目前普遍应用的藻类塘系统HRT一般为2~6 d,当量人口占地一般>10 m2. 显然,其占地面积要比二/三级污水处理主体单元还要庞大许多,这在用地紧张的城市中是很难被接受的.
所有评论仅代表网友意见,与本站立场无关。